
Test Driven 
Development

(beyond JUnit)
with JBehave

Madison JUG

May 25, 2010

Copyright 2010 LearnThinkCode, Inc.
Copying, publishing or distributing without express written permission is prohibited.



Overview

• ATDD and BDD

• JBehave Basics

• Code, Advanced Topics and Integrations

– Multi-Tenant Spring Security Authentication

– JBehave Advanced Topics

– Integration with Spring, DbUnit, Cobertura

• JBehave / Selenium example

• FIT, easyb and Cuke4Duke comparisons

Copyright 2010 LearnThinkCode, Inc.
Copying, publishing or distributing without express written permission is prohibited.



ATDD and BDD

• ATDD – Acceptance Test Driven Dev.
– Pioneered with FIT/Fitnesse

– Executable tests, requires Fixture

• BDD – Behavior Driven Development
– Introduced in 2003 by Dan North

– Early on, referred to as “TDD done well”

– Focuses on behavior of the system versus testing 
of component in isolation from its dependencies

– Uses the language of the business

• Agile 2009 conference
– JBehave, easyb and Cuke4Duke introductions

Copyright 2010 LearnThinkCode, Inc.
Copying, publishing or distributing without express written permission is prohibited.



Specifications to Stories
• Specifications

– Code-level BDD
• Focus on developers

– “describe”, “before” and “it”
– JBehave1, RBehave, easyb, RSpec, JDave

• Stories
– Feature-level BDD

• Focus on wider audience (Owner, BA, QA, Dev, QC)
• Acceptance Tests / defines “done” for a feature

– “Given, When, Then”
– RSpec, Cucumber, JBehave2, easyb, NBehave

• RSpec Story Runner was merged into RSpec

– Plain-Text Stories
• Readable by the business – no code!
• Executable for development and regression testing

Copyright 2010 LearnThinkCode, Inc.
Copying, publishing or distributing without express written permission is prohibited.



JBehave
• Java-based BDD Framework

– Created by Dan North (in 2003) to compare BDD to TDD
– Liz Keogh joined in 2004 – major early contributor
– Mauro Talevi, Paul Hammant (Selenium) and Shane Duan

• Version 1 vs Version 2
– Version 1.0 released Mar 2007
– Version 1.0 had lots of stuff that got pulled out
– Version 2.0 released Sep 2008

• Current version is 2.5 (2.5.7)
– New builds about every week or 2
– Minor releases about every 2-3 months
– Version 3.0 is currently in the works (beta 7)

• JBehave and JBehave Web
– Main component includes

• the core library as well as Ant, Maven, Spring, Pico and Guice integrations

– Web component includes
• the Web Runner webapp that allows entering / running stories
• a Web-based integration for various third-party frameworks

– BSD-like license and requires Java 5

Copyright 2010 LearnThinkCode, Inc.
Copying, publishing or distributing without express written permission is prohibited.



Stories

• Plain-text stories
– Contains a narrative and multiple scenarios

• Narrative
– Optional
– In order to / As a / I Want to

• Scenario(s)
– Given / When / Then / And
– “And” goes with Given, When or Then
– Can also do “when”s after “then”s
– Given Scenarios (scenarios depend on others)
– Examples (tables of data) / “scenario templates”

• Comments (!--)

Copyright 2010 LearnThinkCode, Inc.
Copying, publishing or distributing without express written permission is prohibited.



Scenario

• Java class that maps to a story
– There is a default name mapping

• MyRockingScenario.java = my_rocking_scenario

• Scenario class is main entry point
– Constructor sets up the

• Configuration (lots of defaults)
• Candidate Steps

– What could implement the Given/When/Then statements
– Lifecycle events / methods

• Scenario class is a JUnit3 TestCase
– With one test method - testScenario

• In JBehave 3, this is now called Story

Copyright 2010 LearnThinkCode, Inc.
Copying, publishing or distributing without express written permission is prohibited.



Steps
• Java class with method annotations

– JBehave step annotations
• @Given, @When, @Then
• “And” maps to any of these based on context

– JBehave lifecycle Annotations
• @BeforeStory, @AfterStory, @BeforeScenario, @AfterScenario

• Step annotations take a regex
– Captured values are converted to method parameters

• Various converters, including automatic list handling

– @Alias to map various text strings to 1 method
• Makes for more readable stories (singular / plural)

– @Named used to explicitly map values to parameters

• JBehave figures out best match for text
– Given steps/methods at scenario construction
– Story parsing matches them up

Copyright 2010 LearnThinkCode, Inc.
Copying, publishing or distributing without express written permission is prohibited.



Sample Code

• “Kata” is used to describe an exercise in 
programming which helps hone your skills through 
practice and repetition
– Small code examples for common ideas

– Term is used more in the testing framework world

• We will be using a “Multi-Tenant User Auth” kata
– System supports multiple organizations (tenants)

– Each org has its own authentication policy

– Each org has multiple users

– Those users want to login (authenticate)

– I made this up! It was the best example I had…

• Implementing this with Spring Security

Copyright 2010 LearnThinkCode, Inc.
Copying, publishing or distributing without express written permission is prohibited.



Configuration
• Everything is configurable (powerful!)
• Everything has a default (easy!)
• Main Configuration

– ScenarioDefiner
• How to load stories – default is classpath resource
• Sub-configuration for naming and parsing

– ScenarioReporter
• How to report events during execution – lots of options

– PendingErrorStrategy, ErrorStrategy
• How to handle failure and missing steps

– StepCreator
• How to match up CandidateSteps to actual Steps

– KeyWords (non-english stories)

• Steps Configuration
– StepPatternBuilder

• How to build regex from text / parse parameters

– StepMonitor - reporting but at a step level
– Parameter Converters

Copyright 2010 LearnThinkCode, Inc.
Copying, publishing or distributing without express written permission is prohibited.



JBehave / Selenium

• Will demonstrate Pico Ajax Email example
– Not loading data for me…so tests will run & fail

• Steps class has a Selenium/Waiter in it

• Step Methods call the Selenium object
– Looser coupling than FIT-Selenium Bridge

– Much easier to code than your own fixture

• Maven used to start/stop jetty and selenium 
around integration-test phase

• Doesn’t need JBehave Web
– Uses Selenium directly

Copyright 2010 LearnThinkCode, Inc.
Copying, publishing or distributing without express written permission is prohibited.



Advanced JBehave

• Ant tasks and Maven plugin
– Could not get Ant task to work with Cobertura

• Integration with Pico/Guice (and Spring)
– See warning on next page

• Reporting options
– Console, Text, HTML, XML in example

• Integration with TestNG – and/or – JUnit
– Via use of annotations / ScenarioRunner

• Stepdoc
• Non-English keywords
• JBehave-JUnit-Monitor (separate project)

– Couldn’t access svn site…looks promising though

Copyright 2010 LearnThinkCode, Inc.
Copying, publishing or distributing without express written permission is prohibited.



Pros and Cons
• Pros

– The only plain-text story / all Java solution
– Easily integrates into existing processes / tools
– Helps agile teams define “done” before a story is started

• Define this early – JBehave handles pending work
• Becomes part of Continuous Integration for regression testing

– Can help lower cost of projects
• Simple format for requirements / limited waste
• QC can focus on exploratory testing since more is automated

– Highly customizable
• Could pull stories direct from Agile planning system

• Cons
– My original cons are now all fixed in latest version
– IoC integration requires non-constructor bootstrapping

• JUnit classes are eagerly instantiated!
• IoC bootstrap should happen as a JUnit @RunWith / @Rule
• AbstractSpringScenario shows use of Spring integration

Copyright 2010 LearnThinkCode, Inc.
Copying, publishing or distributing without express written permission is prohibited.



FIT, easyb and Cucumber
• FIT/Fitnesse is a Java-based ATDD framework

– Base fixture code is difficult to understand and extend
– Works with HTML tables rather than plain-text

• Not all that readable by the business
• GivWenZen fixture brings BDD to FIT (@DomainStep annotation)

• easyb is Groovy-based BDD framework
– Does both specifications and scenarios
– Code is embedded with the before/it/given/when/then
– Not parameterized like JBehave annotations

• Cucumber is Ruby-based BDD framework
– Introduced feature-level BDD and plain-text stories
– Cuke4Duke is an extension for Java

• “Steps” are written in Java (or any JVM language)
• Uses the JBehave annotation/regex paradigm
• Runs with JRuby

– Has a richer syntax (gherkin) for story writing
– Has better reporting options than JBehave (for now)
– Cucumber can now use Steps that extend JBehave Steps!

Copyright 2010 LearnThinkCode, Inc.
Copying, publishing or distributing without express written permission is prohibited.



Resources
• BDD

– http://behaviour-driven.org/
– http://dannorth.net/introducing-bdd
– http://www.ryangreenhall.com/articles/bdd-by-example.html

• JBehave
– http://jbehave.org/
– http://blog.m.artins.net/acceptance-tests-with-jbehave-selenium-page-objects
– http://blogs.mikeci.com/2010/05/06/continuous-testing-with-selenium-and-jbehave-using-page-

objects/

• JBehave JUnit Monitor project
– http://code.google.com/p/jbehave-junit-monitor/

• FIT / Fitnesse
– http://fit.c2.com/
– http://fitnesse.org/

• easyb
– http://www.easyb.org/

• Cucumber
– http://cukes.info/

• Cuke4Duke
– http://wiki.github.com/aslakhellesoy/cuke4duke/

• “Bridging the Communication Gap” by Gojko Adzic

Copyright 2010 LearnThinkCode, Inc.
Copying, publishing or distributing without express written permission is prohibited.



Questions?

• Contact Information

Brian Repko

brian.repko@learnthinkcode.com

612-229-6779

Slides and code are available at 
http://www.learnthinkcode.com

Copyright 2010 LearnThinkCode, Inc.
Copying, publishing or distributing without express written permission is prohibited.


